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An important task in modern geostatistics is the assessment and quantification of resource and reserve
uncertainty. This uncertainty is valuable decision support information for many management decisions.
Uncertainty at specific locations and uncertainty in the global resource is of interest. There are many
different methods to build models of uncertainty including Simple Kriging, Inverse Distance, Simple
Cokriging, and so on. Each method leads to different results. We propose a method for combining local
uncertainties predicted by different models to obtain a combined measure of uncertainty that, ideally,
combines the good features of each alternative. The new estimator is obtained as an overlap of alternate
conditional distributions.

Uncertainty as the Overlap of Alternate Conditional Distributions

Let us consider n data on spatial random variable Y(u) at locations U;, i=1...,n in the domain of

interest A. We consider the problem of estimating the value of the variable of interest Y at an unsampled
location u* and quantification of the local uncertainty at this estimation location. Consider two different
estimation techniques (e.g., Simple Kriging and Simple Cokriging) available to obtain local uncertainty at
the estimation location u*. Figure 2 shows a schematic representation of the results for the local
uncertainty at location u*.

Ideally, we would only have one distribution of uncertainty. In presence of many alternatives, we should
simply choose the best one. Best is defined as the distribution with the most theoretically valid approach,
the greatest fidelity with the data, the simplest to apply and so forth. In practice, however, different
techniques are best in different senses. There may be a need to reconcile distributions from different
sources that all have some legitimacy.

In the case considered above, it is known that both techniques provide theoretically valid model of
uncertainty and estimate the same variable at the same estimation location; however, the results are
different. Because both techniques are theoretically valid, there is a zero probability that variable of

interest Y (U) will be equal to some value for which one of the estimators indicates zero probability. In

general, the local uncertainty of Y (U) at an unsampled location u* could be considered to be the minimum

or overlap of the local uncertainties obtained by two different estimation techniques (scaled to 1). The
uncertainty model obtained as an overlap of the two modeled local uncertainties is often narrow and
appears as a reasonable result. The probability is the highest that the value at the unsampled location is in
the interval common to both estimators. This estimator will be referred to as a overlap estimator. Figure 1
shows schematic representation of the overlap of the two the local uncertainty models at location u*.

This approach can easily be extended to the case of several different estimators and models. In particular,
Simple Kriging, Ordinary Kriging (with bias correction), Inverse Distance, if secondary information is
available then also Simple Cokriging, Bayesian Updating, etc. all can be considered. Then the overlap
estimator can take on arbitrary shape, see schematic examples in Figure 2.

Example with Inverse Distance and Simple Kriging

To explain the idea of the overlap uncertainty estimator, we will limit ourselves in this section to
considering standard normal spatial random variable and only two techniques for its estimation, that is,
Inverse Distance and Simple Kriging. A short description of each of the two techniques follows.
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Inverse Distance Interpolator

An Inverse Distance (ID) weighted estimate of the variable of interest Y at an unsampled location u* is a
spatially weighted average of the sample values within a search neighborhood (Shepard, 1968; Franke,
1982; Diadato and Ceccarelli, 2005). It is calculated as

n
YID *(U) =ZﬂiY (ui)! @
i=1
where f;, i =1,...,n, are the weights assigned to each sample. The weights are determined as

)

where di are the Euclidian distances between estimation location and sample points, and exponent p is the
power or distance exponent value.

The mean and variance of the Inverse Distance estimator Y5 *(U) at estimation location U™ under
assumption of stationarity are given by

E(Yip *(u))=m; @)

n n 1 1

Zz(d_p Jp [CoVOY ()Y (u))
var(Y,, * () = - @

()

where m is stationary domain mean (for standard normal random variable Y it is zero), di are the Euclidian
distances between estimation location and sample points, exponent p is the power or distance exponent
value used in inverse distance interpolation and COV(ui,uj), I, j=1,---,n, denotes data-to-data

covariance function calculated though the semivariogram model 2y(h).

Simple Kriging
Simple Kriging is a well established linear estimation technique that provides an estimate of the unsampled
value Y(u) as a linear combination of neighboring observations Y (U;), 1 =1,...,n, accounting for the

spatial continuity of the variable under study (Deutsch, 2002). The Simple Kriging estimator predicts the
value of the variable of interest as

n n
Z* (u):z/liY(ui)+{l—Z/1i}m, (5)
i=1 i=1
where M denotes the stationary domain mean (for standard normal random variable Y it is zero),

A=(A,...,A,)" denotes the vector of the Simple Kriging weights calculated from the normal system of
equations for the estimation location u*,
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Zn:iiCOV(Y(Ui),Y(U,-)) =Cr ). Y(u;), j=L--n, (6)

where  Cov(Y (u;),Y(u;)), i,j=L---,n, denotes data-to-data covariance function and
Cov(Y (u*),Y(u;)), Jj=1---,n, is data-to-estimation point covariance function calculated though

the semivariogram model 2y(h).

Simple Kriging is the best linear unbiased estimator, that is, it provides estimates with minimum error
variance agK in the least square sense given by

0% ="~ A,COV(Y (u). Y (u), 0

2 . . . .
where o “ is the stationary domain variance.

The mean and variance of the Simple Kriging estimator Y, * (u) at estimation location U * are given by

E(Yg *(u)) =m; 8
Var(Y,, * () = 3 3 44,ConY ), Y (u,)) = 0 ~ o ©

where O'SZK is Simple Kriging variance defined in (7).

Overlap Uncertainty

Let us consider 10 simulated data in the domain 20 by 20 units shown in Figure 4. The data were generated
using zero nugget spherical variogram model with range of correlation equal to the size of the domain. Data
distribution is also shown in Figure 3. Let us now determine the local uncertainty at the two estimation
locations (8,12) and (9,9) using inverse distance interpolation and simple kriging, then subsequently
calculate the overlap uncertainty estimator as the overlap of the two alternate conditional distributions.
Figure 4 shows results obtained for estimation location (8,12). Looking at Figure 4 we can clearly note that
the local uncertainty predicted by the inverse distance interpolation and simple kriging are quite different.
As we combine both techniques to obtain the overlap uncertainty estimator, we observe that the local
uncertainty by this approach is significantly narrower than predicted by other of the two estimation
approaches. To quantify the change in the local uncertainty at the estimation location (8,12), we will use the
interval (P10,P90). For the inverse distance estimator this interval is (-2.55,-0.92); for the simple kriging
estimator it is (-1.93,-0.09) and for the overlap uncertainty estimator it is (-2.14,-0.74). So, the change is
significant.

Figure 5 shows results obtained for estimation location (9,9). The local uncertainty predicted by the inverse
distance interpolation and simple kriging are quite similar As we combine both techniques to obtain the
overlap uncertainty, we observe that the local uncertainty by this approach is similar to local uncertainty
predicted by two different estimation approaches. To quantify the change in the local uncertainty at the
estimation location (9,9), we will use again the interval (P10,P90). For the inverse distance estimator this
interval is (-2.66,-1.14); for the simple kriging estimator it is (-2.40,-1.15) and for the overlap uncertainty
estimator it is (-2.44,-1.13). Thus, we can see that results in this case of all considered approaches are
similar.

Case Study I: Cluster.dat Example

To illustrate the performance of the overlap uncertainty estimator a well known GSLIB (Deutsch and
Journel, 1998) data set ‘cluster.dat’ is selected. The data consists of about 100 data that are sampled on a
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random stratified grid and 40 data that are clustered in high valued areas. We discard the clustered data.
The 2-D area of interest is 50 by 50 distance units. The distribution of data is approximately lognormal with
a mean of 2.5 and a standard deviation of 5.0. The spatial continuity of the data in the normal space is
described by isotropic Spherical variogram model with range of correlation 12 and nugget effect of 0.3.
Figure 6 shows the location map of the 100 data and their distribution. Figure 6 also shows the same
analysis but for the normal score transformed 100 data. The aim of our analysis is to establish local
conditional distributions for all 100 data points in crossvalidation using Inverse Distance interpolation
approach, Simple Kriging and Overlap Uncertainty method and check results. Specifically, the fairness and
accuracy of the local uncertainties is checked as well as direct results of crossvalidation for the errors in
estimation. All analysis is conducted in normal space.

Results

Figure 7 shows accuracy plots obtained for Inverse Distance, Simple Kriging and Overlap Uncertainty
estimator prediction in crossvalidation of 100 nscore transformed data of Figure 6. From Figure 7 we can
clearly see that Overlap Uncertainty estimator is both accurate and precise, thus fair, estimator of
uncertainty. Both Simple Kriging and Inverse Distance are accurate, but not precise estimators of
uncertainty. Figure 8 shows the crossplots between p10, p50 and p90 of Simple Kriging and Overlap
Uncertainty estimator for 100 nscore transformed data. Analogous results for Inverse Distance and Overlap
Uncertainty Estimator are shown in Figure 9. Figure 10 shows the p10-p90 local uncertainty intervals for
the first 10 data. One can clearly note from Figures 8-10 that taking uncertainty as the overlap of the local
conditional distributions from Simple Kriging and Inverse Distance (for example) can result in significant
reduction of the probability intervals and, moreover, more fair local uncertainty (see Figure 7). To assess
how much narrower are local conditional distributions predicted by Overlap Uncertainty versus Simple
Kriging and Inverse Distance, crossplots between the variance of the local conditional distributions
(smoothing effect) of the Simple Kriging, Inverse Distance and Overlap Uncertainty estimators for the 100
data of the file cluster.dat are prepared. Figure 11 shows the results. We can observe that the average
variance of the local conditional distributions obtained by the Simple Kriging is 0.706, by the Inverse
Distance is 0.772 and by the overlap of the local conditional distributions is 0.663. Thus, we see that the
average variance of the local conditional distributions is indeed significantly smaller than that of Simple
Kriging (more than 6% smaller) and that of Inverse Distance (more than 16% smaller).

Figure 12 shows results of estimates crossvalidation for Inverse Distance, Simple Kriging and Overlap
Uncertainty estimator for 100 nscore transformed cluster.dat data. Table below summarizes results shown
in Figure 12.

Statistics Inverse Distance Simple Kriging Overlap Uncertainty Estimator
Bias 0.019 0.007 0.011
Correlation 0.481 0.547 0.538

From the table above, we can observe that all three estimators are virtually unbiased, The correlation
between true values and estimates are the highest for the Simple Kriging approach, and only slightly lower
is for the Overlap Uncertainty method.

Case Study I1: Mine650.dat Example

The second case study is based on the data set ‘mine650.dat’. The data consists of 310 data. The 2-D area
of interest is 3000 by 5000 distance units. The spatial continuity of the data is described by isotropic
Spherical variogram model with range of correlation 1450 and zero nugget effect. Figure 13 shows the
locations of the 310 data and their representative (declustered) distribution. Figure 13 also shows the same
analysis but for the normal score transformed ‘mine650.dat” data. The aim of our analysis is the same as
before, that is, to establish the fairness and width of local conditional distributions for all data points in
crossvalidation using Inverse Distance interpolation approach, Simple Kriging and Overlap Uncertainty
method and check results. All analysis is conducted in normal space.
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Results

Figure 14 shows accuracy plots obtained for Inverse Distance, Simple Kriging and Overlap Uncertainty
estimator prediction in crossvalidation of the nscore transformed ‘mine650.dat’ data of Figure 13. From
Figure 14 we can clearly see that all considered uncertainty estimators are accurate, but not precise
estimators of uncertainty. The question is now how wide are local distributions of uncertainty predicted by
each of the approaches. Figure 15 shows the crossplots between p10, p50 and p90 of Simple Kriging and
Overlap Uncertainty estimator. One can see that local distributions of uncertainty are virtually the same,
there are only a few data cases when the local uncertainty distributions obtained based on the Overlap
Uncertainty estimator are narrower. The crossplots between p10, p50 and p90 for Inverse Distance and
Overlap Uncertainty estimator are shown in Figure 16. Note that there is a huge difference in the width of
the local uncertainty distributions. Local uncertainty distributions obtained by the Overlap Uncertainty
estimation are significantly narrower. To summarize, we can say that basically only Simple Kriging has an
impact on the local conditional distributions obtained by the Overlap Uncertainty approach. This is mainly
because the respective means of the local distributions modeled by Simple Kriging and Inverse Distance
are very similar, however local distributions obtained in Inverse Distance are much wider than obtained in
Simple Kriging.

Conclusion

A flexible approach for combining alternate local conditional distributions to create Overlap Uncertainty
estimator was proposed. Both simulated and real case studies (one with 100 data from file cluster.dat and
the other one with 310 data from file ‘mine650.dat’) were considered. It was shown that Overlap
Uncertainty estimator can result in significantly narrower intervals for the local uncertainty.

Good results are not guaranteed. One should always check whether the local distributions obtained by the
approaches are accurate.
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Figure 1: A schematic representation of the example results for two distributions at location u*. Solid and
dashed lines represent local uncertainty obtained by two different approaches; red area is the overlap.

Figure 2: A schematic representation of the two example results for the four local uncertainty at location
u*.Solid dashed, doted and dash-dot lines represent local uncertainty obtained by four different estimation
approaches; red area is an overlap.
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Figure 3: Location map of 10 data (left) and their distribution.
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Figure 4: Location map of 10 data (circles) together with estimation location 1 (8,12) (asterisk) (top left),
result of the Inverse Distance and Simple Kriging for the local uncertainty at the estimation location 1 (top
right), not scaled Overlap Uncertainty estimator together with Inverse Distance and Simple Kriging local
uncertainty models (bottom left), and (scaled).
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Figure 5: Location map of 10 data (circles) together with estimation location 2 (9,9) (asterisk) (top left),
result of the Inverse Distance and Simple Kriging for the local uncertainty.
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Figure 6: Location map of 100 data from file cluster.dat (top left) and their distribution (top right);
Location map of the 100 normal score transformed data from file cluster.dat (bottom left) and their
distribution in normal space (bottom right).
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Figure 7: Accuracy plots for Inverse Distance, Simple Kriging and Overlap Uncertainty estimator
prediction in crossvalidation of 100 nscore transformed primary data from file cluster.dat.
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Figure 8: Crossplot between pl0 (top left), p50 (top right) and p90 (bottom) of Simple Kriging and

P10 Cverlap Uncenainty
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Overlap Uncertainty Estimator for 100 nscore transformed primary data from file cluster.dat.

Figure 9: Crossplot between p10 (top left), p50 (top right) and p90 (bottom) of Inverse Distance and

P10 Overlap Uncertainty

P10 Inverse Diatance

P90 Overlap Uncenainty

1.00_P10: Inverse vs Overlap
mber of data 100
Numiber plotted 100
.t ¥ Variable: mean -1.107
100 std. dev. 556
¥ Variable: mean -1.029
- " sid. dev. 580
. correlation 952
10 s rark complation 548
100 5
e,
.
»:
2.00] y
-3.00
— T —r——— 1
-3.00 -2.00 -1.00 00 1.00

P50 Overlap Uncertainty

g
1

200

g
1

£

P50; Inverse Distance vs Overlap Uncertainty Estimator

mier of data 100
Number platted 100

X Variable: mean 019
sid. dev. 533

¥ Varable: mean .012
st dev. 532
codrelation 961

rank comelation 962

P50 Inverse Diatance

PS0: Inverse Distance vs Overlap Uncertainty Estimator

300
famber of data 100
Number plotted 100
X Variable: mean 1.144
2.003 std. dev, 512
¥ Variable: mean 1.049
e et std dev. 526
* comelation 946
et J rank correlation 850
1.00 4 e
e
.ed
=l
00 .
.
1.00 T T T 1
-1.00 00 1.00 2.00 3.00

PS80 Inverse Diatance

Overlap Uncertainty Estimator for 100 nscore transformed primary data from file cluster.dat.

408-9



P10 - P90 Probability Interval

05

051

Value

-25
0 1 2 3 4 5 6 7 & 8
Data Mumber

Figure 10: p10-p90 probability intervals obtained for the first 10 data in the cluster.dat data set based on
Simple Kriging (dash-dot lines), Inverse Distance interpolation (dashed lines) and Overlap Uncertainty
Estimator (solid lines). Medians (p50) for each of the three considered approaches are shown by dots.
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file cluster.dat.
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Figure 16: Crossplot between pl0 (top left), p50 (top right) and p90 (bottom) of Inverse Distance and
Overlap Uncertainty Estimator for nscore transformed data from file ‘“Mine650.dat’.
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